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Fluctuating phase rigidity for a quantum chaotic system
with partially broken time-reversal symmetry
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The functionalr5u*drWc2u2 measures the phase rigidity of a chaotic wave functionc(rW) in the transition
between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symme-
try, r crosses over from one to zero. We compute the distribution ofr in the crossover regime and find that it
has large fluctuations around the ensemble average. These fluctuations imply long-range spatial correlations in
c and non-Gaussian perturbations of eigenvalues, in precise agreement with results by Fal’ko and Efetov
@Phys. Rev. Lett.77, 912 ~1996!# and by Taniguchiet al. @Europhys. Lett.27, 335 ~1994!#. As a third
implication of the phase-rigidity fluctuations we find correlations in the response of an eigenvalue to indepen-
dent perturbations of the system.@S1063-651X~97!50201-7#

PACS number~s!: 05.45.1b, 24.60.Ky, 42.25.2p, 73.20.Dx
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Wave functions of billiards with a chaotic classical d
namics have been measured both for classical@1,2# and
quantum mechanical waves@3,4#. The experiments are con
sistent with a xb

2 distribution of the squared modulu

uc(rW)u2 of a wave function at pointrW, the indexb51 or 2
depending on whether time-reversal symmetry is presen
completely broken. These two symmetry classes are the
thogonal and unitary ensembles of random-matrix theory@5#.
For a complete description of the experiments one also ne

to know what spatial correlations exist betweenuc(rW1)u2 and
uc(rW2)u2 at two different points and how these correlatio
are affected by breaking of time-reversal symmetry. In
orthogonal and unitary ensembles it is known that the co

lations decay to zero if the distanceurW22rW1u greatly exceeds
the wavelengthl @6#.

Recently, Fal’ko and Efetov@7# managed to compute th
two-point distributionP2(p1 ,p2) in the crossover regime be
tween the orthogonal and unitary ensembles.~We abbreviate

pi[Vuc(rW i)u2, with V the volume of the system.! They
found that the two-point distribution does not factorize in
one-point distributions,P2(p1 ,p2)ÞP1(p1)P1(p2), even if
551063-651X/97/55~1!/1~4!/$10.00
or
r-

ds

e
-

urW22rW1u@l. The existence of long-range correlations in
chaotic wave function came as a surprise.

Two years earlier, in an apparently unrelated paper, T
iguchi et al. @8# had studied the response of an energy le
E(X) to a small perturbation of the Hamiltonian~parameter-
ized by the variableX). They discovered a non-Gaussia
distribution of the level ‘‘velocity’’dE/dX in the orthogonal
to unitary crossover. This was remarkable, since the dis
bution is Gaussian in the orthogonal and unitary ensemb

It is the purpose of the present paper to show that th
two crossover effects are two different manifestations of o
fundamental phenomenon, which we identify asphase-
rigidity fluctuations. The phase rigidity is the real numbe
r5u*drWc2u2 in the interval@0,1#, which equals 1 (0) in the
orthogonal~unitary! ensemble. The possibility of fluctuation
in r was first noticed by Frenchet al. @9#, but the distribution
P(r) was not known. We have computedP(r) in the cross-
over regime, building on work by Sommers and Iida@10#,
and find a broad distribution. Previous theories for the cro
over by Życzkowski and Lenz@11#, by Kogan and Kaveh
@12#, and most recently by Kanzieper and Freilikher@13#
amount to a neglect of fluctuations inr, and thus imply the
R1 © 1997 The American Physical Society
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absence of long-range correlations inc(rW) and a Gaussian
distribution ofdE/dX. Conversely, once the fluctuations
the phase rigidity are properly accounted for, we recover
distant correlations and non-Gaussian distribution of R
@7,8#, and find a correlation between level velocities for i
dependent perturbations of the Hamiltonian.

We start from the Pandey-Mehta Hamiltonian@5,14# for a
system with partially broken time-reversal symmetry,

H5S1 ia~2N!21/2A, ~1!

wherea is a positive number, andS (A) is a symmetric
~antisymmetric! real N3N matrix. The matrixS has the
Gaussian distribution

P~S!}exp~2 1
4Nc

22TrSS†!, ~2!

and the distribution ofA is the same. The real parameterc
determines the mean level spacingD at the center of the
spectrum forN@1, by c5ND/p. The distribution ofH
crosses over from the orthogonal to the unitary ensembl
a.1. The wave functionck of the kth energy level at
widely separated points (urW i2rW j u@l) is represented by the
unitary matrixU that diagonalizesH:

V1/2ck~rW i !→N1/2Uik . ~3!

Consider now an eigenvector uu&
5(U1k ,U2k , . . . ,UNk). ~Since we deal with a single eigen
state, we suppress the level indexk.! Following Ref.@9# we
decomposeuu& in the form

uu&5eif~ tuR&1 iA12t2uI &), ~4!

where uR& and uI & are real orthonormalN-component vec-
tors, andfP@0,p/2) and tP@0,1# are real numbers. This
decomposition exists for any normalized vectoruu& and is
unique fortÞ0,1. The phase rigidityr is related to the pa-
rametert by

r5U E drWck
2U2→U(

i
Uik
2 U25~2t221!2. ~5!

In the orthogonal ensemblet50 or 1, hencer51, while in
the unitary ensemblet5A1/2 hencer50. In the crossover
between these two ensembles the parameterr does not take
on a single value but fluctuates.

To compute the distributionP(r) we use a result of Som
mers and Iida@10#, for the joint probability distribution of an
eigenvalueE and the corresponding eigenvectoruu& of the
Hamiltonian~1!. Substitution of the decomposition~4!, and
inclusion of the Jacobian for the change of variables fr
uu& to r, gives the expression

P~r!}
~12r!N/223/2

DN/221AL
F c2NL

1rS 2b2

D D 2 ]

]b2

1S 2b1

D D 2S 12 ]2

]E2 1
]

]b1
D GZN22~E!U

E50

, ~6a!
e
s.

at

b65
c2

N S 16
a2

2ND , D541
2N

a2 ~12r!S 12
a2

2ND 2,
L521~12r!S 2Na2 21D , ~6b!

ZN~E!5
1

N! S b1

]

]v D N~12vb2 /b1!21~12v!23/2

3~11v!21/2expS 2vE2

~11v!b1
D U

v50

. ~6c!

We have setE50, corresponding to the center of the spe
trum. We still have to take the limitN→`. Expansion of
ZN(0) in a series,

ZN~0!5b1
N (
k50

N

akS b2

b1
D N2k

, ~7a!

ak5
1

k!

]k

]vk ~12v!2~3/2!~11v!2~1/2!uv50→
k@1A2k

p
,

~7b!

and replacement of the summation by an integration, yie

ZN~0!5
c2NA2/p
a2NN23/2S ea2/21

ie2a2/2Ap

2a
erf~ ia! D ~8!

for N@1. Here erf(ia)[2ip21/2*0
aey

2
dy. The double en-

ergy derivative ofZN(E) is computed similarly, but turns ou
to be smaller by a factorN and can thus be neglected. Th
derivatives with respect tob6 can be found by differentia-
tion of Eq. ~8!. Collecting all terms, we find

P~r!5~12r!22expS a2

r21D Fa
2211r

12r

3S ea21
ip1/2

2a
erf~ ia! D2

iap1/2

2
erf~ ia!G . ~9!

In Fig. 1 the distribution ofr is plotted for three values o
the crossover parametera. It is very broad fora51, and
narrows to a delta function at 1 (0) fora→0 (a→`).

FIG. 1. Distribution of the phase rigidityr for a51/4, 1, and
4, computed from Eq.~9!. The crossover from the orthogonal t
unitary ensemble occurs whena'1, and is associated with larg
fluctuations inr around its ensemble average.
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It remains to show that the long-range wave-function c
relations and non-Gaussian level-velocity distributions
Refs. @7,8# follow from the distributionP(r) that we have
computed. We begin with the wave-function correlatio
and consider then-point distribution function

Pn~p1 ,p2 , . . . ,pn!5K )
i51

n

d~pi2NuUiku2!L . ~10!

We substitute the decomposition~4! and do the average in
two steps: First overuR& anduI &, and then overt. Due to the
invariance ofP(H) under orthogonal transformations ofH,
the vectorsuR& anduI & can be integrated out immediately. I
the limit N→`, the components of the two vectors are 2N
independent real Gaussian variables with zero mean
variance 1/N. Doing the Gaussian integrals we find a gen
alization of results in Refs.@9,11# to n.1:

Pn~p1 ,p2 , . . . ,pn!5E
0

1

drP~r!)
i51

n

F~pi ,r!, ~11a!

F~p,r!5~12r!2~1/2!expS p

r21D I 0S pAr

12r D . ~11b!

Here I 0 is a Bessel function. We see that long-range spa
correlations exist only if the distributionP(r) of r has a
finite width. For example, the two-point correlato
^p1

2p2
2&2^p1

2&^p2
2& equals the variance ofr. The approxi-

mation of Ref. @11# ~implicit in Refs. @12,13#! was to
take r fixed at each a. If r is fixed,
Pn(p1 , . . . ,pn)→P1(p1)•••P1(pn) factorizes, and hence
spatial correlations are absent. If instead we substitute
P(r) our result~9!, we recover exactly the results of Fal’k
and Efetov@7,15#.

We now turn to the level-velocity distributions. We co
sider perturbations of the Hamiltonian~1! by a real symmet-
ric ~antisymmetric! matrix S8 (A8),

H85H1xoS81xuiA8. ~12!

Herexu , xo are real infinitesimals, which parameterize, r
spectively, a perturbation that breaks or does not break ti
reversal symmetry. The corresponding level velocities

vo5
]Ek

]xo
, vu5

]Ek

]xu
, ~13!

have distributions

P~vo!5K dS vo2(
i , j

UikU jk* Sji8 D L , ~14a!

P~vu!5K dS vu2(
i , j

UikU jk* iA ji8 D L . ~14b!

We substitute the decomposition~4! for the eigenvector
Uik of H and average first overS8 and A8, assuming a
Gaussian distribution for these perturbation matrices. A
averaging overS8 andA8, the eigenvector enters only via th
parameterr. One finds
-
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P~vo!5E
0

1

drP~r!G11r~vo!, ~15a!

P~vu!5E
0

1

drP~r!G12r~vu!, ~15b!

whereG16r is a Gaussian distribution with zero mean a
variance 16r. We have normalized the velocities such th
vo
25vu

251 in the unitary ensemble. Substitution of Eq.~9!
for P(r) shows that the distribution ofvo coincides with the
result of Ref.@8#. However, ourP(vu) is different. This is
because we have chosenA andA8 to be independent random
matrices, whereas they are identical in Ref.@8#. Independent
matricesA andA8 are appropriate for a system with a pe
turbing magnetic field in a random direction. IdenticalA and
A8 correspond to a system in which only the magnitude
not the direction of the field is varied. Equation~15! demon-
strates thatP(vo) andP(vu) are Gaussians in the orthogon
and unitary ensembles, since thenP(r) is a delta function. In
the crossover regime the distributions are non-Gaussian,
cause of the finite width ofP(r). The relation~15! between
the distributions ofv andr for the GOE–GUE transition is
reminiscent of a relation obtained by Fyodorov and Mir
for the metal-insulator transition@16#. The role of the param-
eter r is then played by the so-called inverse participati
ratio I5*drWucu4. In our systemNI→r12 for N→`. A
difference from Ref.@16# is that our perturbation matrices ar
drawn from orthogonally invariant ensembles, whereas th
perturbation is band diagonal.

As a final example of the importance of the phase-rigid
fluctuations in the crossover regime, we consider the
sponse of the system to two or more independent pertu
tions,

H85H1(
i51

m

xoiSi81(
j51

n

xu jiA j8 . ~16!

For example, one may think of the displacement ofm differ-
ent scatterers, or the application of a localized magnetic fi
at n different sites. Proceeding as before, we obtain the jo
probability distribution of the level velocities
voi5]Ek /]xoi andvu j5]Ek /]xu j ,

P~vo1 ,vo2 , . . . ,vom ,vu1 ,vu2 , . . . ,vun!

5E
0

1

drP~r!)
i51

m

G11r~voi!)
j51

n

G12r~vu j!. ~17!

We see that as a result of the finite width ofP(r), the joint
distribution of level velocities does not factorize into th
individual distributions~15!, implying that the response of a
energy level to independent perturbations of the Hamilton
is correlated.

To summarize, we have introduced the phase rigidity,
fined as the squared modulus of the spatial average of
wave function squared, and computed its distribution fo
chaotic system with partially broken time-reversal symmet
Fluctuations of the phase rigidity from one wave function
another exist if time-reversal symmetry is partially broke
We have shown that these fluctuations imply long-ran
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wave-function correlations and non-Gaussian eigenva
perturbations, thereby unifying two previously unrelated d
coveries@7,8#. A manifestation of the phase-rigidity fluctua
tions is the existence of level-velocity correlations for ind
pendent perturbations of the system.

Note added.We have learned that Y. Alhassid, J. N. Ho
tt.

.

d

.
rd
e
-

-

muzdiar, and N. D. Whelan have been working on this sa
problem, with some overlap of results.
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